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Abstract

The conditions leading to the instability of a compliant insert in
a laminar channel flow have been explored in numerous studies.
In most, however, the analysis of this fluid—structure interaction
system has focused on a limited number of cases to identify
the mechanisms involved in the flow-induced oscillatory mo-
tion of the flexible structure. This study presents a parametric
analysis, based on two-dimensional numerical simulations, and
shows that a set of only three non-dimensional parameters can
be used to provide approximations of the maximum static de-
flection of the flexible insert and the onset of self-excited os-
cillations. The investigations demonstrate that these parame-
ters can take into account, in particular, the length of the insert
and its position along the channel axial direction, and that the
model remains robust for conditions leading to different insta-
bility mechanisms.

Introduction

Flow-conveying channels having compliant inserts are often as-
sociated with two major phenomena; self-excited oscillations
leading to structural vibrations and disturbances in the flow, and
large deformations leading to a collapse of the channel and flow
limitation. In order to mitigate, control or, in some instances,
take advantage of these phenomena, the fluid—structure inter-
action (FSI) mechanisms involved in collapsible channel flow
have been extensively studied to characterise their rich diversity
of static and dynamic wall deformations [5].

Detailed analyses have shown that irreversible energy transfer
from the fluid to the structure leads to the onset of growing os-
cillations that then saturate at finite amplitude. Various mod-
elling approaches have been used to identify the conditions driv-
ing the flow-induced instability; usually characterised by the
contours of the neutral stability in a parameter space based on
Reynolds number and solid-to-fluid stiffness ratio [8, 7]. How-
ever, most of these in-depth studies have only been focused on a
limited number of cases. This circumscribed region of analysis
within the parameter space severely limits the use of these im-
portant contributions in engineering designs or for the analysis
of biomechanical systems, such as blood vessels and airways

(11

The aim of this study is to extend the scope of analysis to allow
predictions of the static and dynamic motion of flexible inserts
in laminar channel flow for a wide range of system geometries,
solid properties and internal/external fluid flow properties. The
analysis of the FSI system is carried out using numerical sim-
ulations and three non-dimensional parameters to describe the
system properties.

Theoretical & Computational Modelling

The major geometric parameters of the model are shown in
Fig. 1. In this FSI system, based on that of [9], fluid flow is
driven by a prescribed Poiseuille velocity profile, of average ve-
locity U* , at the inlet of the 2-D channel of height H* and total
length L The flexible insert, of length Lg,,, is located on

total *
the channel upper wall at a distance Lflp from the inlet. At the
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Figure 1: Schematic of the fluid—structure interaction system:
2-D channel flow with flexible insert section.

outlet, located at a distance L(*jown from the flexible insert, the
prescribed flow is parallel and axially traction-free. The fluid
has density p* and dynamic viscosity u*. The flexible insert is
massless and has thickness 4*, Young’s modulus E* and Pois-
son’s ratio v. It is loaded by an external pressure Pg and the
traction that the fluid exerts on it.

The open-source finite-element library oomph-1ib [4] was used
to formulate the governing equations for the viscous fluid flow
and flexible insert motion. Some manipulation of these equa-
tions was performed to normalise the problem so that it is
numerically better-conditioned. Variables identified with as-
terisks are dimensional and those without asterisks are non-
dimensional. The non-dimensionalisation of the problem was
done by scaling all lengths on the channel height H*, velocities
on the average inlet velocity U*, fluid pressure on the viscous
scale u*U™* /H*, all solid stresses and tractions on the flexible in-
sert’s effective Young’s modulus Ey = E* /(1 —v?), and time
on H*/U*.

Fluid Flow

The motion of the Newtonian fluid is governed by the non-
dimensional incompressible continuity equation
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and Navier—Stokes equations
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with velocity u = uje; + upe,, pressure p, Cartesian coor-
dinate X = xje] + xpep, time 7, and Reynolds number Re =
p*U*H* /u*. The unit vectors in the axial and transverse direc-
tions are denoted by e; and e, respectively. The flow is subject

to the following boundary conditions:
e Poiseuille flow prescribed at the inlet (x; = 0):

ll:6xz(1 —xz)el (3)
e parallel, axially traction-free flow at the outlet (x; = Lyga1):

u-eg=0 and T-e; =0 (4a,b)
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Figure 2: Contour plots of the steady-state minimum constriction of the channel Hy,, (left) and the dynamic instability threshold
(Caetr X Re)qrit (right) as functions of the ratio Caesr/Re and the effective external pressure Pegs.

e no-slip on all channel walls:

u=10 on the rigid walls 5)

R
u= — on the flexible insert 6)

or
where T is the fluid traction vector and R is the position vector
to the displaced flexible insert. The fluid domain is discretised
with nine-node quadrilateral Taylor—-Hood elements.

Flexible Insert

The flexible insert is assumed to be infinitely thin and is mod-
elled as an elastic beam [3, 6, 2]. It is discretised with
one-dimensional, isoparametric, two-node Hermite beam ele-
ments, which are based on geometrically nonlinear Kirchhoff—
Love beam theory with incrementally linear constitutive equa-
tions. The beam’s undeformed shape is parametrised by a non-
dimensional Lagrangian coordinate & and the non-dimensional
position vector to a material point on the undeformed beam is
given by r(E). The unit normal to the undeformed beam is de-
noted by n. The applied traction f = f*/E%; (a force per unit
deformed length of the beam) which deforms the beam causes
its material point to be displaced to the new position R(E), and
the unit normal to the beam is then denoted by N, as shown in
Fig. 1. No pre-tension is applied in the flexible insert so that all
the tension is induced by stretching of the insert. For the system
under consideration, the non-dimensional form of the principle
of virtual displacements that governs the beam deformation is
given by
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are the squares of the lengths of infinitesimal material line ele-
ments in the undeformed and deformed configurations, respec-
tively. Therefore, the ratio \/A/a represents the stretch of the
beam while the strain Y and bending K are given by

1

where

a (8a,b)

V=3 (A—a) and x=-—(B-D) (9a,b)
with 5 5
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representing the curvature of the beam, respectively, before and
after the deformation.

External Pressure and Coupling

The flexible insert is loaded by an external pressure Pex; and the
traction exerted by the fluid flowing in the channel. The non-
dimensional load vector, combining these two tractions acting
on its top and bottom faces, is given by

i
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is the ratio of the fluid pressure scale to the beam’s effective
Young’s modulus. The non-dimensional parameter Q indicates
the strength of the fluid—structure interaction.

Time-stepping was performed using a steady scheme for the
flexible insert, and a BDF-2 scheme for the fluid. The FSI prob-
lem was discretised monolithically and the Newton—Raphson
method was used to solve the nonlinear system of equations
employing the SuperLU direct linear solver within the Newton
iteration.

Results

When the compliant insert is only loaded by an external pres-
sure, its deformation takes a regular parabolic shape, for which
the maximum deflection is located at the middle of the insert. In
this case, the equilibrium occurs between the external pressure
and the insert tension. However, the fluid—structure interaction
between the laminar channel flow and the pressure-loaded com-
pliant insert results in deformations of more complex shapes,
as qualitatively illustrated in Fig. 1, and can lead to self-excited
oscillations of the flexible insert. This study focuses on predic-
tions of two characteristics of the insert deformation, of partic-
ular interest in many engineering applications: the steady-state
minimum constriction of the channel H,,, produced by the
maximum transverse deflection of the flexible insert Npax, and
the threshold of the self-excited insert motion. In the following,
the system is described as stable if it returns to its mean state
after a perturbation is applied to the mean state. It described as
dynamically unstable if it amplifies the applied perturbation and
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Figure 3: Steady-state minimum constriction of the channel
Hpin as a function of the ratio Caer/Re for different effective
external pressure Pegy.

then saturates at finite-amplitude oscillations about the mean
state.

Parametric Analysis of the FSI System

A parametric study of the FSI system was used to determine
the dimensional parameters that predominantly affect the flex-
ible insert shape and the onset of self-sustaining oscillations.
This leads to the characterisation of the static and dynamic be-
haviour of the flexible insert based on three non-dimensional
parameters capturing the balance of stresses within the three
components of the FSI system: flexible insert, external loading
and fluid flow. The first two proposed parameters Caefr X Re and
Cacsr/Re are derived from characteristic non-dimensional num-
bers associated with the system: the Reynolds number Re and
the effective Cauchy number
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which represents the ratio of the flow pressure coefficient acting
over the length of the insert to the coefficient of tension induced
in the insert due to stretching. The third proposed parameter is
the effective external pressure
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This parameter represents the ratio of net pressure loading on

the insert to insert stiffness. The pressure correction term Pyc.,

accounts for the location of the insert relative to the outlet,

where the zero-pressure reference is applied.
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Preliminary simulations showed that the steady-state defor-
mation of the flexible insert is only marginally dependent on
Cacgr X Re. However this parameter has significant impact on
the dynamic instability of the system. Therefore, the steady-
state minimum constriction of the channel Hy,;, was determined
for variations of Caefr/Re and Pegr. The threshold of instability
was characterised by the critical value of Caef X Re, needed to
observe oscillatory motion of the insert about its mean position,
also for variations of these two parameters. Figure 2 shows the
changes in Hpj, and (Caefr X Re)crie over the {Caegr/Re,Petr}
parameter space. It can be seen that the steady-state minimum
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Figure 4: Dynamic instability threshold (Caefr X Re)cit as a
function of the ratio Caesr/Re for different effective external
pressure Pegr.

constriction of the channel follows a similar trend for all the
considered values of effective external pressure and decreases
as the ratio Caefr/Re increases. However, the evolution of the
dynamic instability threshold as a function of the ratio Cacfr/Re
changes depending on the value of effective external pressure.
For Peg > 0.3, the system becomes more stable (increase in
(Caett X Re)crit) as Caegr/Re increases. For Pegr < 0.3, the system
is first destabilised with the increase in Caefr/Re but becomes
more stable as Caefr/Re continues to increase.

Steady-State Minimum Constriction

The results of the FSI system analysis show that the shape of
the deformed flexible insert can vary significantly depending
on the values of effective external pressure and ratio Caegr/Re.
Thus, the locus along the flexible insert where the transverse
deflection is maximal can move in the axial direction. However,
the variation of the maximum transverse deflection Nmax, hence
of the minimum constriction Hyyiy = 1 — Nmax, as a function of
the ratio Caegr/Re follows a regular trend, as shown in Fig. 3.
The change in P value generates a vertical translation of the
H,i, curves. Therefore, the data obtained from the numerical
simulations can be fitted to yield an analytical expression of the
minimum constriction in the channel:
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This expression provides a reasonably good approximation of
the non-dimensional minimum constriction, which indicates
the severity of the obstruction produced by the flexible insert
(Hin = H}Y,, /H*), for a wide range of system configurations,
here described in terms of the non-dimensional parameters Peg
and Caegr/Re.

Self-Sustaining Oscillations

The results of the parametric study of the FSI system show that
the evolution of the instability threshold as the ratio Cacgs/Re in-
creases exhibits different trends depending on the effective ex-
ternal pressure. As shown in Fig. 4, for a relatively high external
pressure (Pegr = 0.4), the system becomes more stable to ap-
plied perturbations as the ratio Caefr/Re increases. For a lower
external pressure (Pegr = 0.24), the curve of the critical product
Caefr X Re has a minimum, indicating that the system becomes
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Figure 5: Instantaneous streamlines at the time step for which the oscillatory transverse deflection of the flexible insert is maximal.
Cases A, B, C and D correspond to system configurations indicated in Fig. 4. Scaling of spanwise dimension is 5:1 compared to

streamwise dimension.

more easily unstable over a range of Caegt/Re. This difference
in trends suggests that different mechanisms are at play in the
fluid—structure interaction depending on the system conditions.
Thus, major changes in the flow behaviour near the constricted
region of the channel can be observed when the viscous effects
become more important. Figure 5 shows the streamlines in the
flow for four cases for which the system conditions, as indicated
in Fig. 4, lead to finite-amplitude oscillations of the flexible in-
sert. It can be observed that for cases A, B and D, the flow de-
taches from the deformed flexible insert just downstream of the
most constricted cross-section of the channel. A recirculation
zone is therefore formed downstream of the flexible insert near
the upper rigid wall. For these three cases, the difference in con-
ditions does not have significant impact on the flow behaviour
but influences the size of the recirculation zone and the ampli-
tude of the perturbations in the flow convected downstream of
the constricted region. For case C, however, the flow remains
attached to the flexible insert almost over its whole length. A
smaller recirculation zone is then created near the lower rigid
wall. Therefore, the pressure distribution along the flexible in-
sert is significantly different for case C in comparison to the
three other cases.

Conclusions

A parametric study of a flow-conveying channel having a com-
pliant insert subjected to an external pressure was performed
to determine the parameters required for self-sustained oscilla-
tions to occur. Three non-dimensional parameters, Caegr X Re,
Cucfr/Re and Peg;, were proposed to describe the system prop-
erties and allow prediction of two major characteristics of the
insert deformation. The steady-state maximum deflection of the
flexible insert was found to be predominantly linked to the ratio
Cucfr/Re and the effective external pressure Pegr. Data obtained
from the numerical simulations were fitted to yield an analyt-
ical expression of this system characteristic. The threshold of
FSI instability was found to be associated with a critical value
of the product Caegr X Re. Therefore, the onset of self-sustained
oscillations of the insert deformation could be predicted from
the three non-dimensional parameters.
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